What’s new?
On 18 February, NIST (the US National Institute for Standards and Technology) announced Release 4.0 of the NIST Framework and Roadmap for Smart Grid Interoperability.
What does it mean?
History shows us that the world has become more interconnected. The future of technology lies in even more networks and systems. Exhibit A is the Internet, which has revolutionized information flow and communication, but, looking further back in history, electrification, the interstate highway system, the telephone system, the railroads, and many more examples demonstrate the powerful effects of interconnection. But each of those networks is littered with the detritus of failed interconnections due to lack of compatible standards: train track width, DC or AC electricity, and so forth.
Beneficial electrification has great potential for reducing climate effects of electricity generation if the electricity can be generated from renewable energy. While the sun doesn’t always shine and the wind doesn’t always blow in one location, renewable energy (including hydropower and geothermal sources) is reliably available somewhere not far from where you need that electricity. Thus, interconnection, along with the many types of storage of energy being developed, hold promise for reliable electricity generation that may help us save the planet. But such interconnection relies on compatible standards for electricity flow, for communication about needs and availability of electricity, and for control of the devices that consume and produce electricity.
Interoperability focuses on the communication part of those interconnections. From page i of the NIST report, “Interoperability — the ability to exchange information in a timely, actionable manner — is a critical yet underdeveloped capability of the power system. Significant grid modernization has occurred in recent years, but the proliferation of technology and associated standards has only modestly improved interoperability.”
Also, from the same page, “The benefits of interoperability are broad and reach all stakeholders at all scales. … by allowing coordinated small actions across diverse stakeholders and devices to have grand impacts.”
We’ve been through this before, many, many times. We know how to have the many stakeholders work together to set standards and create regulations that ensure interoperability, while still allowing, in fact encouraging innovation to flourish. We also know how to break the standards apart so that an engineer designing, say, an inverter, can refer to standards that cover the interoperability issues for inverters and not need worry about interoperability issues that affect only high voltage transmission lines or electric vehicles.
The increasing variety of generation sources and locations means that the grid needs to have more communication among these devices. Also, consumer devices (refrigerators, air conditioners, washing machines, etc.) increasingly come with sensing and communication capabilities that allow the owner – or the utility – to control when and how that device operates. While the electric utility industry refers to these devices as being “behind the meter,” that is, on the user’s side of the electric meter, they really are part of the grid because their communication capabilities offer huge potential to dynamically balance the supply and demand for electricity. Again, the grid needs more communication interoperability.
What does it mean for you?
Interoperability is an issue for all information technology. You can use any mouse with any computer (well, not quite, make sure the plug is compatible, and you may need an adapter) because there are standards for how the devices communicate. You, as the consumer, just shouldn’t have to worry about interoperability.
Your relationship as a consumer, as a manufacturer, or as an operator of any organization, with your electric provider is changing. If, for example, you have solar panels on your home, you may buy electric power but also sell it to your utility. If your organization has equipment that uses large amounts of power, you should already be working closely with your electric provider and you will be working even more closely with them in the future. For example, you might implement a soft start for your machines after down time in order to avoid adverse impacts on the grid. These interrelationships will increase with increasing abilities of new devices to sense, communicate, and be controlled.
Just as we have become providers of information used by others through our activities on social media, our devices will be wired to provide information, raising the same issues as those raised by our use of social media, most notably, who owns, benefits, and controls the information generated by the devices in our homes and factories. The NIST report states (page 6) “An empowered energy consumer has many opportunities to obtain value and can optimize their interactions with the broader energy system to maximize their preferred benefit,” but I fear that the consumer may not be the one defining this new relationship. The NIST report notes on page 58, “Absent an environment that allows universal access to the full range of opportunities, customers may be required to select devices and systems for feasibility of integration rather than the operational or economic value propositions they offer.”
Interoperability is necessary for this improved communication in all parts of the electrical grid, but it comes with its evil twin, a possible lack of security. Thus, this report also covers the need for security aspects in this new interoperability.
Where can you learn more?
The NIST statement concerning the new report has helpful information on interoperability. The report itself has a summary called Key Messages, which I have quoted from. The US Office of Electricity (part of the US Department of Energy) has a helpful page on grid modernization.
The Electronic Frontier Foundation (EFF, “The leading nonprofit defending digital privacy, free speech, and innovation for 30 years and counting!”) has noted the privacy threats of the smart grid, but with a focus on households. I cannot find that any business or manufacturing group (for example, the National Association of Manufacturers) is watching the developments in interoperability of the electrical grid.
An article on the McKinsey website argues that utility companies have not described clear benefits for consumers from grid modernization.